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RISEE: A Highly Interactive Naturalistic Driving Trajectories Dataset
with Human Subjective Risk Perception and Eye-tracking Information*
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Abstract— In the research and development (R&D) and
verification and validation (V&V) phases of autonomous driv-
ing decision-making and planning systems, it is necessary
to integrate human factors to achieve decision-making and
evaluation that align with human cognition. However, most
existing datasets primarily focus on vehicle motion states and
trajectories, neglecting human-related information. In addition,
current naturalistic driving datasets lack sufficient safety-
critical scenarios while simulated datasets suffer from low
authenticity. To address these issues, this paper constructs
the Risk-Informed Subjective Evaluation and Eye-tracking
(RISEE) dataset which specifically contains human subjective
evaluations and eye-tracking data apart from regular natu-
ralistic driving trajectories. By leveraging the complementary
advantages of drone-based (high realism and extensive scenario
coverage) and simulation-based (high safety and reproducibil-
ity) data collection methods, we first conduct drone-based
traffic video recording at a highway ramp merging area. After
that, the manually selected highly interactive scenarios are
reconstructed in simulation software, and drivers’ first-person
view (FPV) videos are generated, which are then viewed and
evaluated by recruited participants. During the video viewing
process, participants’ eye-tracking data is collected. After data
processing and filtering, 3567 valid subjective risk ratings from
101 participants across 179 scenarios are retained, along with
2045 qualified eye-tracking data segments. The collected data
and examples of the generated FPV videos are available in our
website1.

I. INTRODUCTION

Recent years have witnessed the rapid development of au-
tonomous driving technology. As the ”brain” of autonomous
vehicles, the decision-making and planning (D&P) system
plays a crucial role. In the research and development (R&D)
phase of D&P systems, with recent advancements in deep
learning technologies, learning-based algorithms have been
extensively studied and proven capable of handling complex
driving tasks in diverse environments [1]. However, training
a well-informed algorithm requires a large amount of high-
quality data.

To address this issue, vast amounts of vehicle-side data
have been collected by both manufacturers and research
institutions, such as the Waymo dataset [2] and the nuScenes
dataset [3]. However, since the number of multi-sensor-
equipped collection vehicles is limited, achieving diverse
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scenario coverage is prohibitively expensive, not to men-
tion including collision scenarios due to safety and ethical
constraints. Therefore, from another perspective, many re-
searchers use camera-equipped drones to capture the traffic
from a bird’s eye view and extract datasets of vehicle
trajectories, such as the HighD [4] and SIND [5] datasets.
Nevertheless, the above-mentioned datasets only focus on
vehicle motion states but lack human factors such as sub-
jective risk perception and physiological data, which limits
the algorithms’ ability to make decisions aligned with human
cognition.

Further, in the verification and validation (V&V) phase
of D&P systems, driving datasets with human factors are
also essential to extract and generate critical testing scenarios
[6], construct human baseline driver model [7] and evaluate
safety and intelligence performance [8], etc.

Aiming at constructing human-factor-integrated driving
datasets, numerous studies have conducted real-world or
simulation experiments to capture drivers/passengers’ sub-
jective risk perception and physiological data. For instance,
Ke et al. [9] collected human drivers’ driving behavior and
physiological data using a 3-DoF (three-degree-of-freedom)
driving simulator across 12 custom-designed scenarios, while
additionally recruiting 40 volunteers as expert evaluators to
obtain human subjective evaluations for each scenario. Meng
et al. [10] collected passengers’ physiological signals (e.g.,
eye-tracking data, electrodermal activity) through real-world
experiments, while using a slider device to capture their
real-time subjective feedback (e.g., perceived comfort or risk
levels). You et al. [8] first conducted real-world experiments
and then obtained subjective evaluations from both drivers
and passengers by asking participants to review the recorded
videos during experiments in the post-experiment interviews.

However, both simulation experiments and real-world
experiments still exhibit inherent limitations. For simula-
tion experiments, the realism of scenarios (including both
the authenticity of surrounding vehicles’ behaviors and the
environmental fidelity), alongside the realism of driving
experience (e.g., force feedback, audiovisual cues, control
latency) remain critical concerns. In contrast, real-world
experiments exhibit high fidelity but they are constrained by
safety requirements, limiting the interactivity and criticality
of the collected scenarios, which results in a scarcity of
safety-critical scenarios.

Towards addressing the aforementioned issues, this pa-
per constructs a Risk-Informed Subjective Evaluation and
Eye-tracking (RISEE) dataset that includes both naturalistic
driving trajectories and human factors. Taking advantage of
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the low cost and high scenario coverage of drone-based
data collection methods, we first conduct video recordings at
a highway merging zone. Subsequently, naturalistic driving
scenarios are extracted and highly interactive scenarios are
then manually selected. After that, high-fidelity driver’s
first-person view (FPV) videos are reconstructed by sim-
ulation with optimizations to road surface textures, traffic
infrastructure (e.g., lane markings, signage), environmental
elements (e.g., static objects, weather effects), and acoustic
feedback (e.g., engine noise, tire friction). Finally, volunteers
are recruited to view these videos in a driving simulator,
providing subjective risk perception scores. Throughout this
process, their eye-tracking data (e.g., gaze fixation points,
saccadic movements) is synchronously recorded using a
head-mounted eye tracker.

Compared with existing human-factor-integrated driving
datasets, the contributions of RISEE are as follows:

• Highly interactive naturalistic driving scenarios: The
RISSE dataset contains 179 highly interactive naturalis-
tic driving scenarios, encompassing multiple interaction
patterns such as car-following, cut-in, overtaking, and
ramp merging, along with diverse driving risk levels
ranging from safe to near-crash events. Since all the
scenarios are derived from real-world occurrences, their
plausibility and authenticity are inherently guaranteed.

• High-fidelity FPV videos: High-fidelity driver’s FPV
videos are reconstructed based on the recorded trajec-
tories. To ensure the realism of the driving experience,
both the external vehicle environment (including road
surface textures, traffic infrastructure, environmental el-
ements, and acoustic feedback) and the vehicle interior
(including the dashboard, turn signals, rearview mirrors)
are carefully designed and rendered.

• Both subjective and objective risk information with eye-
tracking data: A total of 102 volunteers are recruited,
and their subjective risk ratings for the scenarios along
with eye-tracking data are collected. Additionally, based
on the vehicle kinematic states, the driving risk for each
scenario is assessed using specific risk indicators and
provided as scenarios’ objective risk in the dataset.

The remainder of the paper is organized as follows:
Section II introduces the data acquisition method, including
naturalistic driving trajectory extraction, drivers’ PFV videos
generation, and human factor data collection. In Section III,
the collected data is processed and analyzed, with discussions
from both driver characteristics and scenario characteristics

perspectives. Section IV illustrates potential applications of
the proposed dataset. Section V concludes the paper.

II. DATA ACQUISITION METHOD

A. Drone-based Traffic Data Recording and Processing

To cover as many interaction patterns as possible, we
select a highway on-ramp merging section as the recording
site, where there exist both merging behaviors from the ramp
and various main-road behaviors including car-following,
overtaking, and cut-in maneuvers. Specifically, the road sec-
tion in RISEE is the entrance of Jiasong Middle Road of the
G50 Shanghai-Chongqing Expressway in China, including
two lanes in the main road and an on-ramp with a 226-meter
acceleration lane, as shown in Fig. 1.

To record the traffic data, a DJI Mavic 2 Pro drone
is deployed, maintaining a stable hover at an altitude of
300 meters and conducting a 4-hour continuous traffic data
collection. After recording, the lane information is first
identified using ArcMap [11] and converted into OpenDrive
[12] format for further simulation reconstruction. Then, a
convolutional neural network (CNN)-based method is em-
ployed for vehicle detection and bounding box construction.
Since the recognition algorithm is not the focus of this
study, we utilize the established YOLOv5 [13] architecture
as our detection framework. Next, highly interactive scenario
segments are manually selected for subsequent simulation
reconstruction. It should be noted that, to mitigate the
computational and rendering load during reconstruction, only
interaction-relevant vehicles are retained in the scenarios.
Finally, a total of 179 highly interactive scenarios are ex-
tracted, with vehicle trajectory information in the scenarios
(including position, orientation, speed, acceleration, etc.)
stored in CSV files. Moreover, in each scenario file, the
first vehicle is designated as the ego vehicle, serving as
the reference for driver’s perspective in the subsequent FPV
videos generation process. The number of vehicles in the
179 extracted scenarios ranges from 2 to 7, with the detailed
distribution presented Table. I.

B. Simulation Reconstruction and Driver’s FPV Videos Gen-
eration

In this paper, the simulation software SimOne [14] is
chosen to reconstruct the scenarios. This software uses a
graphics rendering method that integrates 3D Gaussian splat-
ting, which can ensure a basic level of realism. Generally,
by importing vehicle trajectory files into the simulation
software, the simulation reconstruction of scenarios can be

Fig. 1. The road network of the recording site.



TABLE I
VEHICLE NUMBER DISTRIBUTION IN THE EXTRACTED SCENARIOS.

Number of Vehicles Number of Scenarios

2 12
3 32
4 73
5 37
6 12
7 13

Total 179

achieved. Furthermore, in addition to the built-in scenario ob-
jects provided by the simulation software, we have specially
implemented additional visual optimizations to ensure an
authentic driving experience. Fig. 2 illustrates the simulation-
reconstructed driver’s FPV perspective.

As can be seen in the figure, according to the different
types of ego vehicles, FPV perspectives for sedans and
trucks are separately generated. More in detail, each FPV
perspective includes the driver’s forward view, left view,
and right view. Based on the normal human field of view
(FOV), we set the wide-angle of cameras in every direction to
60◦ after evaluating exterior object distortion under varying
wide-angle camera configurations. By adjusting the position
coordinates of the cameras to allow their images to be
stitched together without overlapping, FPV videos with a
horizontal FOV of 180◦ are generated.

When it comes to the visual optimizations, for the ve-
hicle’s external environment, we have added abundant traf-
fic infrastructure to match the actual situation of Chinese
highways, including guardrails, billboards, traffic signs and
roadside surveillance cameras. For the vehicle interior, we
have additionally rendered the dashboard and the perspec-
tives of the rearview mirrors on both sides, thereby enabling
human evaluators to have a better understanding of the
vehicle current velocity and driving environment. At the

same time, turn signals are also displayed in the dashboard,
thereby demonstrating the vehicle’s lane-changing intention.
Since the entire trajectory of the vehicle is known, the lane-
changing intention of the vehicle at the current moment can
be determined by the actual motion state at the next moment.
Specially, if the vehicle is located on the ramp or acceleration
lane (Lane No.3 in Fig.1), then we stipulate that the left turn
signal remains activated, because the vehicle ultimately needs
to complete ramp merging.

In addition, to obtain a more immersive driving experi-
ence, acoustic feedback including engine noise and tire noise
of all vehicles is generated. Specifically, according to the
relative positions and relative speeds between vehicles, stereo
sound is generated based on SumoSound [15]. Examples of
the driver’s FPV videos can be found on our website.

C. Human Subjective Evaluation and Eye-tracking Data
Collection

In this paper, we recruit volunteers as human evalu-
ators through a questionnaire. The questionnaire collects
volunteers’ basic personal information and driving-related
information, while assessing their experimental compatibil-
ities. The experimental compatibility assessment includes
questions regarding whether participants wear glasses, have
heart disease, might experience nervousness when wearing
experimental equipment, or have previously participated in
similar experiments. Through the questionnaire screening
process, a total of 102 volunteers are recruited for data
collection. The detailed demographic and driving-related
information of the participants is shown in Table II.

From Table II, we can find that our participants come
from diverse age groups and exhibit varying characteristics
in terms of driving experience, driving frequency, and driving
ability. It is worth mentioning that 8 participants do not
have a driver’s license (their driving-related characteristics
are labeled as None). We believe feedback from individuals
without a driver’s license is still valuable, since future

Fig. 2. Illustrations of the driver’s FPV perspectives. The upper presents the truck’s viewpoint, while the lower demonstrates the sedan’s viewpoint.



TABLE II
INFORMATION OF THE PARTICIPANTS.

Information Characteristics Number Ratio

Gender Male 78 76.5%
Female 24 23.5%

Age

19-25 79 77.5%
26-30 15 14.7%
31-45 4 3.9%
46-55 4 3.9%

Driving
Years

None 8 7.8%
0-5 73 71.6%
6-10 16 15.7%
10+ 5 4.9%

Driving
Frequency

None 8 7.8%
Less than once a month 47 46.1%
At least once a month 22 21.6%
At least once a week 14 13.7%
At least once a day 11 10.8%

Self-
assessment
of Driving
Ability

None 8 7.8%
Novice 19 18.6%
Intermediate 26 25.5%
Proficient 27 26.5%
Expert 22 21.6%

high-level autonomous driving systems may not necessarily
require human drivers to hold a license.

Before the data collection, each participant is fully in-
formed of potential risks and discomforts, privacy protec-
tions, and their right to withdraw freely from the study.
In addition, participants are required to complete a ques-
tionnaire to assess their sensitivity of risk perception. This
questionnaire is adapted from [16], which primarily cap-
tures participants’ worries about traffic risks, their perceived
likelihood of accidents, and their concerns about traffic
risks and being victimized, with each item measured on
five-point Likert scales ranging from “strongly disagree” to
“strongly agree”. The pipeline of the human data collection
is illustrated in Fig. 3.

As shown in Fig. 3, participants are asked to sit in a driving
simulator to view the generated driver’s FPV videos, with a

head-mounted eye tracker capturing their eye-tracking data.
In this study, although no manual control of the vehicle
is required, the driving simulator is still used to preserve
real driving experience during video viewing. The three
screens of the driving simulator are set at a 120-degree angle,
matching the FOV configuration used during video genera-
tion. At the same time, stereo audio is delivered through
headrest-mounted speakers to enhance immersion. Notably,
in preliminary experiments we find that physiological signals
such as ECG and EDA can’t respond quickly to scenario
changes due to the short duration of each scenario (15-20
seconds). Therefore, only eye-tracking data is collected.

Prior to the formal video viewing sessions, each participant
will first watch two baseline videos (with sedan’s and truck’s
perspective, respectively) which contain no other vehicles
to acclimate to the viewing environment. Subsequently, one
typical safe scenario and one typical critical scenario are
selected and presented, thereby calibrating participants’ risk
expectations (i.e., all the viewed scenarios’ risk levels are
bracketed between these two reference extremes). Finally,
the remaining 177 scenarios are divided into 10 groups,
each containing 17 to 18 scenarios. To mitigate possible
evaluation mistakes caused by fatigue, each participant is
assigned to watch only two groups of videos, with each
video played twice to ensure full comprehension of the
scenario. Moreover, the selection of video groups is uniform
to ensure that each video is viewed in similar frequency.
By doing so, each video could be viewed by at least 20
different participants. After viewing each video, participants
will report their subjective risk perception, measured via a 5-
point Likert scale ranging from “minimal risk” to “extremely
high risk”, as shown in Fig. 3. Note that to ensure unbiased
risk-level distribution across groups (as the dataset includes
both safe and critical scenarios), we first calculate the DNDA
metric for each scenario as an objective risk value. DNDA
is a normalized risk indicator based on drivable area [17].
The closer its value is to 1, the more critical the scenario is.
Based on these values, safe and critical scenarios are evenly
allocated to each group.

Fig. 3. Illustration of human data collection pipline.



III. DATA ANALYSIS

A. Data Processing and Screening

Since eye-tracking data is continuously recorded during
the data collection process, containing redundant information
during scenario video transitions, the eye-tracking data is
first segmented and aligned with the scenario data. At the
same time, to ensure data quality, internal consistency checks
are performed on participants’ subjective risk perception
feedback to identify and exclude careless or insincere rat-
ings. More in detail, within each video group, duplicate
scenarios are inserted at distant intervals. Participants ex-
hibiting inconsistent subjective risk perceptions (defined as
a rating discrepancy exceeding 1 point) between repeated
scenarios are identified, and all their feedback within that
video group are removed from subsequent analyses. Further,
due to issues such as device disconnections, intermittent
latency, and excessive timestamp inaccuracies in the eye-
tracking equipment during the experiment, not all collected
eye-tracking data is valid. Ultimately, a total of 3567 valid
subjective risk perception ratings of 101 participants are
retained (One participant doesn’t pass the consistency checks
in both scenario groups), accompanied by 2045 valid eye-
tracking data segments.

B. Overall Distribution of Scenario Subjective and Objective
Risks

As previously described, each scenario is viewed and
rated by multiple participants for subjective risk perception.
Therefore, the mean value across participants is calculated
as the subjective risk value for each scenario. Concurrently,
the DNDA metric and time to collision (TTC) metric for
each scenario is computed, with the maximum DNDA value
and the minimum TTC value observed during the scenario
serving as the objective risk value. It is worth noting that
when calculating the TTC, in addition to computing the
TTC between the ego vehicle and the preceding vehicle,
the TTC of the following vehicle behind ego vehicle is also
calculated to assess the risk of being rear-ended. Finally, the
frequency distribution histograms of subjective and objective
risks across the 179 scenarios are presented in Fig. 4.
Moreover, to better visualize the distribution of subjective
and objective risks across various scenarios, Kernel Density
Estimation (KDE) is applied to generate probability density
curves. The DNDA and TTC risk values for all scenarios are
also provided in the RISEE dataset.

As can be seen from the figure, there are significant
differences in the distributions of subjective and objective
risks. Since TTC values exceeding 5 seconds are generally
considered to represent relatively safe scenarios, scenarios
with TTC > 5s are all categorized as TTC = 5s for statistical
calculation. According to the TTC and DNDA calculation
results, the objective risks of the 179 scenarios are mostly
at low to moderate levels, while based on human subjective
perception, the subjective risks of scenarios are concentrated
at moderate levels. We believe this is because the objective
risk indicators are entirely based on the vehicle’s kinematic

(a) Scenario distribution of TTC calculation results

(b) Scenario distribution of DNDA calculation results

(c) Scenario distribution of subjective risk perception values

Fig. 4. Illustrations of the overall subjective and objective risk distributions.

states for risk assessment. In contrast, human subjective risk
perception incorporates more factors beyond the scope of
objective risk indicators (such as the vehicle approaching
guardrails or crossing lane markings, and intentions of other
vehicles to change lanes based on turn signal information),
thus resulting in higher risk perception.

Furthermore, we have calculated the Spearman correlation
coefficients among the three risk distributions. As shown
in Fig. 5, while demonstrating high statistical significance
(p<0.001), the results only exhibit a certain degree of corre-
lations between these risk distributions, indicating the differ-
ences between subjective and objective risks. This analysis
once again demonstrates the irreplaceability of subjective
risks and the necessity of collecting human factors.

C. Effects of the Drivers’ Sensitivity of Risk Perception

As mentioned in Section II-C, we have additionally used
a questionnaire to evaluate participants’ sensitivity of risk
perception. Based on these results, we divide all participants
into four groups and study their rating patterns. Specifically,



Fig. 5. Heatmap of the Spearman correlation coefficients among the three
risk distributions.

according to the questionnaire results, we first calculate each
participant’s risk sensitivity score. Since the direction of
risk correlation varies across questions (i.e., ”strongly agree”
indicated high risk sensitivity in some questions but low risk
sensitivity in others), we adjust the results to ensure that
scores positively correlated with risk sensitivity. After that,
participants are divided into four groups of roughly equal
size based on their adjusted risk sensitivity scores, ranked
from highest to lowest. Thanks to the uniform and unbiased
selection of video groups during data collection, all four
groups with different risk sensitivity levels cover all the 179
scenarios, and their subjective risk perception distributions
across these scenarios are shown in Fig. 6.

As demonstrated in Fig. 6, with participants’ risk percep-
tion sensitivity decreasing across Groups 1-4, there is a corre-
sponding reduction in scenarios rated as high-risk. Notably,
compared to Group 1 and Group 2, participants in Group
3 and Group 4 have higher risk tolerance, so their scores
are concentrated in the 1-3 point range (with lower scores
indicating lower risk perception). At the same time, despite
differences in risk perception sensitivity, certain scenarios
are consistently perceived as high-risk across all groups,
indicating that participants reach consensus on extreme sce-

Fig. 6. Distribution of scenario subjective risk perception results among
groups of different risk sensitivity level. From Group1 to Group4, partic-
ipants’ risk sensitivity level becomes progressively lower, indicating that
their tolerance for risk increases correspondingly.

Fig. 7. Distribution of the standard deviation of subjective evaluation
results.

narios. The above analysis shows that this dataset contains
rich driver samples, while also demonstrating potential future
applications for personalized decision-making training target-
ing drivers with different risk perception sensitivity levels.

D. Analysis on the Subjective Evaluation Consistency of
Scenarios

In order to analyze the consistency and differences in
subjective evaluations of the same scenarios by different
participants, the standard deviation (SD) of subjective eval-
uation results for all 179 scenarios is calculated and their
distribution is demonstrated in Fig. 7, with the orange curve
fitted to a normal distribution. As can be seen from Fig. 7,
for most scenarios, the standard deviations of participants’
subjective evaluation results range between 0.6 and 1.2,
falling within the normal range of subjective risk perception
variations among participants. However, a small number of
scenarios exhibit standard deviations of 0 or exceeded 1.3,
indicating that participants either reach complete consensus
or express divergent perceptions in these specific scenarios.

Fig. 8. Visualization of the scenario evaluated as “extremely high risk” by
all participants. (SD=0, minTTC=0.57s, maxDNDA=0.68)



To further investigate the underlying reasons behind these
phenomena of high consensus and high divergence, we
conduct case studies on the corresponding scenarios. By ex-
amining the two scenarios with a standard deviation of 0, we
observe that they either exhibit obviously safe situations (car-
following scenarios where the ego vehicle acts as the leading
car maintaining a constant speed) or distinctly dangerous
conditions, which is visualized in Fig. 8 to facilitate better
comprehension. As shown in Fig. 8, the ego vehicle, which is
the reference of the driver’s FPV perspective, initially merges
from the ramp onto the main road. Due to its aggressive lane-
changing maneuver, it nearly collides with BV3 traveling
normally on the main road at 9.0s. After that, the ego
vehicle accelerates rightward, attempting to overtake BV2 via
the acceleration lane, during which process it again nearly
collides with BV2 (as depicted at the 12.0s in the figure).
Ultimately, the ego vehicle narrowly completes the merging
maneuver at the end of the acceleration lane. This scenario is
so critical that all participants, no matter their risk perception
sensitivity levels, evaluate it as ”extremely high risk”.

For scenarios with large standard deviation in subjective
evaluation results, we select an example as visualized in Fig.
9. In this scenario, the ego vehicle first merges from the
ramp onto the main road, followed by executing consecutive
lane changes to reach the leftmost lane (Lane 1). Throughout
these maneuvers, the ego vehicle maintains safety distances
from surrounding vehicles with no preceding vehicles in its
path, leading a portion of participants to evaluate it as a low-
risk scenario. However, given that consecutive lane changes
violate Chinese traffic regulations and the ego vehicle ex-
hibits excessive proximity to the left-side guardrail after the
lane change, this leads another portion of participants to
evaluate it as a high-risk scenario. The above analysis is also
well reflected in the participants’ eye-tracking heatmaps, as

Fig. 9. Visualization of the scenario with a large standard deviation in
subjective evaluations. (SD=1.34, minTTC=3.74s, maxDNDA=0.49)

(a) Participant evaluating the scenario as low risk

(b) Participant evaluating the scenario as high risk

Fig. 10. Eye-tracking heatmaps of participants with divergent subjective
risk perception in scenario shown in Fig. 9.

shown in Fig. 10. For participant who evaluates the scenario
as low-risk, his/her visual attention remains fixated on the
front area of the vehicle during the scenario, demonstrating
negligible monitoring of rear and lateral areas. In contrast,
for participant who evaluates the scenario as high-risk, he/she
exhibits comprehensive visual scanning behaviors, actively
monitoring not only the front area but also the rearview
mirror and lateral forward area.

In summary, by studying these scenarios with high eval-
uation consensus or divergence, while combining the par-
ticipants’ eye-tracking data, we can learn different human
risk perception patterns, which can provide insights into the
development and evaluation of autonomous vehicles.

IV. POTENTIAL APPLICATIONS

Since the RISEE dataset contains highly interactive natu-
ralistic driving trajectories and extensive eye-tracking data
from diverse human samples, it has great potential for
application in both the R&D and V&V phases of autonomous
vehicles. Here we present several illustrative examples.

A. Risk-aware Personalized Decision-making and Planning

The RISEE dataset’s subjective risk perception data can
be integrated into D&P systems by serving as risk labels
for driving trajectories [18] or as reward functions via risk
assessment indicators [19], enabling human-aligned risk-
aware decision-making and planning. Additionally, RISEE’s
diverse driver samples (demographics, driving attributes, risk
sensitivity) support understanding individualized risk percep-
tion patterns, facilitating personalized decision-making and
driving style adaptation [20].

B. Risk Indicator Construction and Evaluation

Existing risk assessment indicators primarily rely on cur-
rent vehicle states and motion predictions, lacking human
subjective risk perception incorporating additional deter-
ministic or potential risk factors like lane markings and
motion uncertainties in surrounding vehicles [21], which can



be identified using the eye-tracking data in RISEE (e.g.,
repeated gaze on left-front vehicles indicating perceived lane-
change risks) for risk indicator constructions. For evaluation,
while current studies use collision inevitable time thresholds
to assess warning timeliness [22], high-level autonomous
systems require earlier detection of emerging risks to enable
defensive driving. This dataset can benchmark risk indica-
tors by comparing their alerts against human-perceived risk
timing in scenarios, evaluating both accuracy and proactive
risk anticipation capabilities.

C. Multi-dimensional Driving Intelligence Evaluation

Existing frameworks for driving intelligence evaluation
typically incorporate multiple high-level hierarchies and inte-
grate multi-dimensional fundamental metrics such as safety,
comfort, and efficiency [8][23]. The driving trajectories with
human subjective risk perception provided by the RISEE
dataset can effectively assist in training safety performance
evaluation models. Meanwhile, thanks to the eye-tracking
data in the dataset, participants’ pupil diameter, gaze points,
and gaze duration can so provide insights into cognitive
comfort evaluations [24].

V. CONCLUSIONS

In this paper, we present the RISEE dataset, which in-
corporates highly interactive naturalistic driving trajectories,
human subjective evaluations, and their eye-tracking data.
To capture realistic and highly interactive traffic scenarios,
drone-based traffic videos are first recorded on a highway
on-ramp merging section. Subsequently, high-interaction sce-
narios are manually selected, and simulation reconstructions
are performed within simulation software to generate drivers’
FPV videos. To enhance the immersive experience for human
evaluators, both the vehicle interior and external environ-
ments are visually optimized, and acoustic feedback is also
generated. Volunteers are then recruited to watch the FPV
videos in a driving simulator, during which their subjective
risk perception and eye-tracking data are collected. Analysis
of the dataset demonstrates that RISEE contains scenarios
with diverse interaction patterns and rich collection of human
samples, demonstrating significant potential in both R&D
and V&V stages of autonomous driving D&P systems.
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